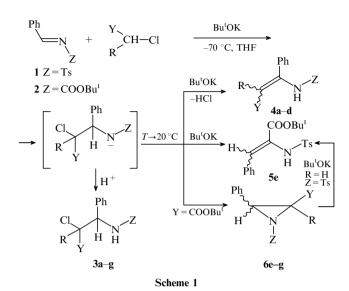
Vicarious nucleophilic substitution of hydrogen in electrophilic aldimines: synthesis of enamines substituted with electron-withdrawing groups

Mieczyslaw Makosza,* Shamil Nizamov and Andrzej Kwast


Institute of Organic Chemistry, Polish Academy of Sciences, PL-01-224 Warsaw, Poland.

Strongly electrophilic benzaldimines react with α -chlorocarbanions giving two types of substituted enamines, *via* vicarious nucleophilic substitution of hydrogen or a cyclisation-ring opening process.

Carbanions containing leaving groups X at the carbanionic centre react with nitroarenes via formation of σ^H adducts followed by base-induced β -elimination of HX to give products of the vicarious nucleophilic substitution (VNS) of hydrogen. A similar reaction can occur between these carbanions and electrophilic alkenes; however, such a process is less common because the initial adducts are often protonated to give products of the Michael addition or intramolecular nucleophilic substitution takes place furnishing cyclopropane derivatives — reactions which usually do not occur in the σ^H adducts to nitroarenes.

An analogous reaction could, in principle, occur at electrophilic carbon–heteroatom double bonds, provided there is a hydrogen at the carbon atom. In analogy to the requirements formulated for VNS reactions in electrophilic alkenes 2 one would expect that this process would be feasible in aldimines R-CH=N-Z when Z assures efficient delocalization of the negative charge and R favours abstraction of the proton necessary for the base-induced β -elimination. One example of such a process between N-phenylbenzaldimine and chloromethanesulfomorpholide carbanion has already been reported. 3 A similar reaction of carbonyl-stabilized sulfonium ylids with N-arylimines has also been published. 4 However, in both these cases Z — an aryl group — possessed rather poor negative charge stabilisation ability and the mechanistic features were not fully recognized. 3

The requirements promoting the VNS-type reaction are met by Ph-CH = N-Z where $Z = SO_2Ar 1$ and $Z = COOBu^t 2$; these compounds are readily available via condensation of benzaldehyde with *p*-toluenesulfonamide or *tert*-butyl carbamate, respectively. The reaction of these imines with carbanions derived from α-chlorosulfone, α-chlorocarboxylic acids and chloroform, generated in the presence of ButOK at low temperature, resulted in the formation of the anions of adducts 3a-g which were stable at -70 °C no matter whether an excess of the base was used or not; they could be isolated and characterized (Scheme 1, Table 1) after protonation.^{†,‡} When the reaction was carried out in the presence of a large excess of ButOK and the temperature was allowed to rise to 20 °C the adducts 3a-e underwent a transformation leading to the enamines 4 or 5, depending on the nature of the carbanion-stabilizing groups. The adducts of the chlorosulfone and chloroform formed enamines 4a-d,

apparently *via* the base-induced β-elimination of HCl. Thus, in this case the vicarious substitution of hydrogen occurs according to the general Scheme 1 of this reaction. On the other hand, the enamine **5e** produced from the

On the other hand, the enamine **5e** produced from the adduct of the chloroacetate carbanion was formed *via* a different pathway: a process involving a cyclization-ring opening sequence. The difference in the reaction pathways observed can be easily rationalized the differing susceptibility of the chlorine atoms in adducts **3a–d** and **3e** to nucleophilic substitution, hence the cyclization reaction.

Experimental support for the above explanation arose from observations that the anions of adducts 3e-g (Y = COOBu¹), obtained at low temperature, when warmed to 20 °C without any excess of base underwent cyclisation leading to the aziridine derivatives 6, whereas in the case of 3a-d the adducts were recovered after the same procedure. Furthermore, the aziridine 6e treated with Bu¹OK at room temperature gave corresponding enamine 5e in good yield, which is in accord with earlier reports on the base-promoted aziridine ring-opening reactions, 6.7 whereas 6g in which there is no acidic proton at C-2 necessary for the ring-opening process (R = Me) remained unchanged. This result proves that the alternative route to formation of enamines 4 by abstraction of the C-3

Table 1 Reactions of imines 1 and 2 with α -chlorocarbanions.

Z	Y	R	Product, yield $(\%)^a$		
			adduct	enamine	aziridine
Ts	Cl	Cl	3a , 61	4a , 40	b
Ts	Ts	Н	3b , 72	4b , 68	Ь
COOBu ^t	Cl	Cl	3c , 81	4c , 53	Ь
COOBu ^t	Ts	Н	3d , 93	4d , 70	b
Ts	$COOBu^t$	Н	3e , 65	5e , 21 ^c 60 ^c	^d 6e , 73
COOBu ^t	$COOBu^t$	H	3f , 78	b	6f , 79
COOBu ^t	$COOBu^t$	Me	3g , 68	b	6g , 53

^a Isolated yields, mixture of two stereoisomers. ^b Not formed. ^c Obtained directly from 1. ^d From 6e.

[†] General procedure for the reactions of 1 and 2 with α-chloro CH-acids. To a stirred solution of Bu^tOK (1.1 or 2.5 mmol) in dry THF (7 ml) was added a solution of the CH-acid (1 mmol) and aldimine 1 or 2 (1 mmol) in THF (1 ml), dropwise at −70 °C. The mixture was stirred for 30 min at this temperature to obtain the *adducts*, or after 5 min the cooling bath was removed, the reaction mixture was allowed to warm up to room temperature and stirred for 1 h to obtain the *enamines* (excess of Bu^tOK) or the *aziridines* (with equimolar amount of the base). After the reaction was complete the mixture was poured into cold aqueous NH₄Cl, slightly acidified with dilute HCl and worked-up by standard methods including column chromatography on SiO₂.

[‡] All new compounds gave the expected ¹H NMR and IR spectra and satisfactory elemental analyses. The structures of enamines **4b,d** and **5e** were unambiguously proved by chemical transformations: acidic hydrolysis to acetophenone derivatives (for **4**) and catalytic hydrogenation to phenylalanine derivative^{6,8} (for **5**).

proton and subsequent ring opening, does not occur under these reaction conditions. Unexpectedly, the aziridine **6f**, although possessing an acidic proton, was found to be stable toward an excess of Bu^tOK even at room temperature; thus it was the final reaction product.

The results obtained show a certain similarity between the reactions of electrophilic imines to those of highly electrophilic alkenes.² The influence of the structure of the imine, carbanion, leaving group and the reaction conditions on the possible reaction pathways, *i.e.* VNS and aziridine ring opening, is now under investigation.

References

1 M. Makosza and J. Winiarski, Acc. Chem. Res., 1987, 20, 282.

- 2 M. Makosza and A. Kwast, J. Chem. Soc., Chem. Commun., 1984, 1195; M. Makosza and A. Kwast, Tetrahedron, 1991, 47, 5001.
- 3 L. W. Christensen, J. M. Seaman and W. E. Truce, J. Org. Chem., 1973, 38, 2243.
- ⁴ A. J. Speziale, C. C. Tung, K. W. Ratts and A. Yao, *J. Am. Chem. Soc.*, 1965, **87**, 3460.
- B. E. Love, P. S. Raje and T. C. Williams, *Synlett*, 1994, 493;
 W. B. Jennings and C. J. Lovely, *Tetrahedron*, 1991, 47, 5561.
- 6 F. A. Davies, G. V. Reddy and H. Liu, J. Am. Chem. Soc., 1995, 117, 3651.
- 7 A. Padwa and W. Eisenhardt, J. Org. Chem., 1970, 35, 2472.
- 8 F. A. Davies, P. Zhou and G. V. Reddy, J. Org. Chem., 1994, 59, 3243.

Received: Cambridge, 7th November 1995 Moscow, 22nd December 1995; Com. 5/07313H